منابع مشابه
Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators
The mid-infrared spectral range (λ~2-20 μm) is of particular importance as many molecules exhibit strong vibrational fingerprints in this region. Optical frequency combs--broadband optical sources consisting of equally spaced and mutually coherent sharp lines--are creating new opportunities for advanced spectroscopy. Here we demonstrate a novel approach to create mid-infrared optical frequency ...
متن کاملMid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy.
Mid-infrared femtosecond optical frequency combs were produced by difference frequency generation of the spectral components of a near-infrared comb in a 3-mm-long MgO:PPLN crystal. We observe strong pump depletion and 9.3 dB parametric gain in the 1.5 μm signal, which yields powers above 500 mW (3 μW/mode) in the idler with spectra covering 2.8 μm to 3.5 μm. Potential for broadband, high-resol...
متن کاملSpectroscopic near-field microscopy using frequency combs in the mid-infrared.
We introduce a new concept of spectroscopic near-field optical microscopy that records broad infrared spectra at each pixel during scanning. Two coherent beams with harmonic frequency-comb spectra are employed, one for illuminating the scanning tip, the other as reference for multi-heterodyne detection of the scattered light. Our implementation yields 200 cm(-1) wide amplitude and phase spectra...
متن کاملCoherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects.
We demonstrate the first low-noise mid-IR frequency comb source using a silicon microresonator. Our observation of strong Raman scattering lines in the generated comb suggests that interplay between Raman and four-wave mixing plays a role in the generated low-noise state. In addition, we characterize, the intracavity comb generation dynamics using an integrated PIN diode, which takes advantage ...
متن کاملChip-based frequency combs with sub-100 GHz repetition rates.
By fabricating high-Q silicon-nitride spiral resonators, we demonstrate frequency combs spanning over 200 nm with free spectral ranges (FSRs) of 80, 40, and 20 GHz using cascaded four-wave mixing. We characterize the RF beat note for the 20 GHz FSR comb, and the measured linewidth of 3.6 MHz is consistent with thermal fluctuations in the resonator due to amplitude noise of the pump source. Thes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Letters
سال: 2020
ISSN: 0146-9592,1539-4794
DOI: 10.1364/ol.391651